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Abstract Heart-rate complexity (HRC) has been pro-

posed as a new vital sign for critical care medicine. The

purpose of this research was to develop a reliable method

for determining HRC continuously in real time in critically

ill patients using multiple waveform channels that also

compensates for noisy and unreliable data. Using simul-

taneously acquired electrocardiogram (Leads I, II, V) and

arterial blood pressure waveforms sampled at 360 Hz from

250 patients (over 375 h of patient data), we evaluated a

new data fusion framework for computing HRC in real

time. The framework employs two algorithms as well as

signal quality indices. HRC was calculated (via the method

of sample entropy), and equivalence tests were then per-

formed. Bland–Altman plots and box plots of differences

between mean HRC values were also obtained. Finally,

HRC differences were analyzed by paired t tests. The gold

standard for obtaining true means was manual verification

of R waves and subsequent entropy calculations. Equiva-

lence tests between mean HRC values derived from man-

ually verified sequences and those derived from

automatically detected peaks showed that the ‘‘Fusion’’

values were the least statistically different from the gold

standard. Furthermore, the fusion of waveform sources

produced better error density distributions than those

derived from individual waveforms. The data fusion

framework was shown to provide in real-time a reliable

continuously streamed HRC value, derived from multiple

waveforms in the presence of noise and artifacts. This

approach will be validated and tested for assessment of

HRC in critically ill patients.

Keywords Signal detection analysis �
Electrocardiography � Heart rate � Clinical decision

support systems � Machine learning � Automatic data

processing

1 Introduction

Heart-rate complexity (HRC) is a method of quantifying

the amount of complex variability or irregularity in the

heart-rate time series. It is most often obtained by ana-

lyzing the R-to-R interval (RRI) of 800 beats or more from

a patient’s electrocardiogram (ECG). We previously

showed that HRC is a sensitive marker of physiologic state

during blood loss [1] and trauma [2, 3], and is associated

with mortality [2] and the need to perform life-saving

interventions in trauma patients [3–5]. Because generation

of HRC can be performed remotely and noninvasively and

requires small sections of commonly monitored wave-

forms, HRC can be integrated into a clinical diagnostic tool

or decision support system. With today’s advances in

computing technology, the real-time analysis of HRC in

critically ill or injured patients is more realizable than ever.

However, ECG waveforms are often corrupted by arti-

facts, missing data, and noise that is non-Gaussian and

nonstationary. Calculating reliable, real-time HRC values

from such signals, and providing confidence intervals for

the estimates, is therefore difficult. This is especially true

for trauma or critically ill patients. One approach to miti-

gate this problem is to leverage multiple waveform sources

to generate signal quality indices (SQIs) and account for

noise and various artifacts.

Leveraging multiple waveform sources to obtain heart-

related information has been previously described [6–10],

but has not been applied to the development of new vital
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signs such as HRC. Owing to their cardiovascular origin,

ECG lead waveforms (e.g., limb Leads I and II, or chest

Lead V) and pulsatile waveforms [e.g., arterial blood

pressure (ABP)] provide independent measures of heart

rate that may be suitable for estimation of HRC as well [6,

7]. Furthermore, the ABP is often unaffected by noise,

artifacts, and missing data which may degrade the ECG,

thereby suggesting that data fusion can provide a more

reliable alternative to extracting the heart-rate time series.

Nonetheless, the use of multiple waveform channels is only

advantageous when the quality of each data source can be

determined and the data leveraged accordingly.

The purpose of this research was to develop a reliable

method for determining a continuous value of HRC in real

time for critical care patients using multiple waveform

channels that also compensates for noise and the unreli-

ability of data. The method is based upon the concept of

fusing detected peak-to-peak interval (PPI) and RRI esti-

mates derived from multiple noisy waveform sources, such

as from ABP and multiple ECG leads, during intensive care

unit (ICU) monitoring. This approach automatically rejects

degraded waveform data. We hypothesized that a recursive

fusion of outputs–first, from several best, published peak

detection (PD) algorithms; then, from multiple noisy

waveform channels and derived SQIs–could produce a

more robust real-time solution for calculating HRC in

critically ill patients. By practically fusing the outputs of

multiple real-time PD algorithms on multiple waveforms to

calculate a streaming HRC value, our data fusion frame-

work may be easily integrated into a real-time HRC soft-

ware program for decision support and triage in critically

ill patients.

2 Materials and methods

The architecture of our framework consisted of multiple

real-time PD algorithms applied simultaneously to each

waveform source, intermediate logic for fusing detected

PPIs and SQIs, and a final block for computing HRC val-

ues. The resulting system thus integrated decision stages at

the detection and computational levels in order to obtain a

final output (see Fig. 1).

2.1 Signals, peak detection, and quality indices

We selected four R-wave detection (RWD) algorithms for

real-time implementation based upon (1) their individual

performance—as measured using two well-known bench-

mark parameters [sensitivity (Se), positive predictive value

(?P)] against Physionet’s Massachusetts Institute of

Technology–Beth Israel Hospital (MIT–BIH) Arrhythmia

Database and as published in the literature [11–15]—and

(2) their ease of implementation for real-time computation.

Ease of implementation denoted how well we understood

the mechanisms of a detection algorithm. The selected

Fig. 1 Architecture of a data fusion framework for calculating heart-

rate complexity in real time. Given multiple noisy waveforms at the

front-end, the data fusion framework employs instances of two

algorithms–one (AESOP) for detecting the R waves of an ECG lead

waveform, and the other (BEBOP) for detecting the peaks of a non-

ECG waveform—in order to obtain a sequence of peak-to-peak

intervals and signal quality indices (bSQI) for each waveform. Upon

detection within a specified time window, the framework then

employs logic to select a waveform for calculating heart-rate

complexity (HRC). A final block performs the actual complexity

calculation
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algorithms were the Pan–Tompkins [11] (Se: 99.57 %, ?P:

99.76 %), Hamilton–Tompkins [12] (Se: 99.69 %, ?P:

99.77 %), Christov [13] (Se: 99.74 %, ?P: 99.65 %),

Afonso–Tompkins–Nguyen–Luo [14] (Se: 99.59 %, ?P:

99.56 %), and Zong–Moody–Jiang [15] (Se: 99.65 %, ?P:

99.77 %) algorithms; the first two were merged into one

component for our final RWD algorithm.

Because RWD algorithms perform differently in dif-

ferent environments [16], we extended the RWD problem

to a problem of fusing multiple detection outputs and

multiple leads. Tests against animal ECG waveform

records suggested that RWD performance could be

enhanced by adaptively dropping and re-selecting indi-

vidual component algorithms and signals based upon per-

formance history and signal quality, respectively. The

signal quality index would be an additional output of our

final RWD and PD algorithms.

To process multiple waveforms and develop a frame-

work for respective algorithms to operate together in real

time, we leveraged signal quality indices for all signals as

well as RWD principles to develop new PD algorithms

compatible with non-ECG waveforms. Specifically, we

modified the final RWD algorithm to produce a final PD

algorithm for non-ECG waveforms.

To assess the signal quality of each waveform, we

compared the individual performances of multiple PD

algorithms on the waveform. Since different detectors are

sensitive to different types of noise [16], a comparison of

how well algorithms performed within a given time frame

provides one estimate of the level of noise in a signal [6, 7].

In this study, concepts from five peak detection algorithms

with different noise sensitivities were used. Key concepts

of each algorithm are listed in Table 1.

The signal quality of a waveform, with a time frame of

NTotal beats, was defined in [6, 7] to be the ratio of beats

detected synchronously by n PD algorithms to all the beats

detected by the final detection algorithm:

bSQI ¼ ðNMatched=NTotalÞ; ð1Þ

where NMatched denotes the number of beats (or isolated

events) agreed by a specified number n of algorithms,

NTotal denotes both the time frame and beats detected by

the final detection algorithm, and bSQI denotes the wave-

form’s beat SQI. Following fusion at the detection level,

our framework selected outputs from the waveform with

the highest bSQI.

In other words, whenever a chosen number of compo-

nent algorithms detected the same peak of a waveform, a

match was recorded. The higher the number of matches

within a specified time window, the higher the beat signal

quality index (bSQI). We found this method to be sufficient

for comparing the signal qualities of different waveform

signals.

Lastly, to make all algorithms platform-independent and

operable for real-time output, we implemented them in the

Java (Sun Microsystems, Sunnyvale, CA, USA) program-

ming language using the Eclipse Integrated Development

Environment (Eclipse Foundation, Ottawa, Canada).

2.2 Heart-rate complexity

We calculated HRC via the method of sample entropy,

SampEn(m, r, N), which equals the negative natural loga-

rithm of the conditional probability that two epochs similar

for m intervals remain similar at the next interval, given a

sequence of N intervals and excluding self-matches. Here,

similarity means that peak-to-peak intervals differ by no

more than some tolerance r (in milliseconds) [17, 18].

For clarity, sample entropy was computed by the fol-

lowing equations:

SampEnðm; r;NÞ ¼ � lnðA=BÞ; ð2Þ

B ¼ ½ðN � m� 1Þ=2�
XN�m

i¼1

Br
i ðmÞ; ð3Þ

A ¼ ½ðN � m� 1Þ=2�
XN�m

i¼1

Ar
i ðmÞ: ð4Þ

In other words, for a sequence of N intervals, if xm(i) is

an epoch of m consecutive intervals starting at index i and

running from i = 1, …, N - m, then Br
i mð Þ denotes the

number of epochs xm(j) within r of xm(i), for i = j,

Table 1 Key concepts of selected peak detection algorithms

Algorithm Key concepts

Pan–Tompkins [11] Derivative-based signal processing; integer filters; the adaptation of thresholds using recent signal peaks and

noise peaks; a search-back mechanism for finding missed beats; refractory blanking; T-wave identification

Hamilton–Tompkins [12] (See above); fiducial mark placement and consistency; mean peak level estimation; baseline shift discrimination;

optimization of search-back detection thresholds

Christov [13] Combination of three independent adaptive thresholds; search-back mechanism for finding missed beats

Afonso–Tompkins–Nguyen–

Luo [14]

Multi-rate signal processing; signal decomposition into sub-bands using a filter bank; feature extraction; single-

channel detection blocks and decision levels; the adaptation of detection strengths using signal and noise

histories; partial refractory blanking

Zong–Moody–Jiang [15] Curve length transformation; noise suppression using sign consistency; threshold adaptation; refractory blanking
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multiplied by (N – m - 1)-1, and Ar
i mð Þ denotes the

number of epochs xm?1(j) within r of xm?1(i), for i = j,

multiplied by (N – m - 1)-1 [18–20].

Parametric values (N = 200, m = 2, r = 6) were estab-

lished from previous work [1–5]. A higher SampEn implies

a more ‘‘complex’’ signal as well as a higher likelihood that

the signal belongs to a healthy patient [19–25].

2.3 Patient data and clinical validation

250 ICU patients, as described by records in the Massa-

chusetts General Hospital/Marquette Foundation (MGH/

MF) Waveform Database [26–28], were selected for this

study. Of these patients, 155 were males, 77 were females,

and 18 were not specified. In addition, 20 patients had atrial

fibrillation (AF), 65 had sinus tachycardia (ST), 111 had

normal sinus rhythm (NSR), and the remaining patients had

other rhythms, such as sinus bradycardia or ventricular

pacing. Demographics of patients are shown in Table 2.

Selection of the MGH/MF Waveform Database was based

upon the following considerations. First, this database was

developed to extend the scope of the MIT–BIH Arrhythmia

Database [26], which has been historically utilized much for

beat detection and in our previous work [29]. We desired the

MGH/MF Waveform’s Database’s similarity to and

improvements over its predecessor, such as the availability of

simultaneous hemodynamic data and multiple ECG leads.

Second, all records were easily accessible and documented,

and none were excluded from the study; this would not have

been made possible by larger and/or more recent sources.

Third, because of the patients’ broad demographics (see

underlying rhythms in Table 2), we were able to obtain a

wide range of HRC values needed for analysis and compar-

ison without filtering records. Lastly, online documentation

simplified the task of classifying patients into groups [26].

These considerations made it more suitable for us to choose

the MGH/MF Waveform Database over other sources.

Using simultaneously acquired ECG and ABP wave-

forms from these records, we evaluated our new data fusion

framework. Only three ECG leads (Leads I, II, V) were

available, and all waveforms were sampled at 375 Hz. The

dominant lead was Lead II. Validation involved over 375 h

Table 2 Demographics of 250 patients in the MGH/MF waveform database

Patients Total Age HR High ABP Low ABP

# % Mean Std Mean Std Mean Std Mean Std

Entire database 250 100.0 58.4 22.0 91.4 19.4 127.3 27.8 58.4 14.7

Gender

Females 77 30.8 57.1 21.4 91.6 18.6 126.6 28.2 58.8 13.6

Males 155 62.0 59.1 22.4 91.4 19.9 127.6 27.7 58.2 15.2

Unknown 18 7.2 – – – – – – – –

Underlying rhythm

Atrial fibrillation 20 8.0 73.3 9.2 91.2 13.6 118.6 24.8 53.8 9.8

Atrial flutter 4 1.6 72.0 6.1 64.3 12.2 147.5 25.0 46.0 4.9

Atrial pacing 5 2.0 66.4 9.7 89.6 8.9 154.8 38.9 56.2 24.8

Atrial tachycardia 1 0.4 0.8 – – – – – – –

Atrioventricular pacing 1 0.4 73.0 – 89.0 – 134.0 – 31.0 –

Chaotic atrial rhythm 2 0.8 70.0 1.4 80.0 126.0 8.5 56.0 8.5

Dual chamber pacing 1 0.4 52.0 – – – – – – –

Junctional escape rhythm 1 0.4 80.0 – 140.0 – 50.0 – 56.0 –

Junctional rhythm 2 0.8 60.0 – 96.0 – 110.0 – 70.0 –

Junctional tachycardia 1 0.4 55.0 – 103.0 – 168.0 – 10.0 –

Multifocal atrial tachycardia 1 0.4 77.0 – 120.0 – 123.0 – 54.0 –

Sinus arrhythmia 1 0.4 76.0 – 66.0 – 160.0 – 80.0 –

Sinus bradycardia 6 2.4 67.3 1.2 50.8 8.2 172.0 27.8 44.0 32.9

Sinus rhythm 111 44.4 13.3 18.8 9.0 10.7 20.8 26.1 9.7 12.4

Sinus tachycardia 65 26.0 50.7 27.2 113.3 11.1 120.9 27.7 59.6 15.4

Unknown 20 8.0 0.2 0.3 – – – – – –

Ventricular pacing 8 3.2 62.5 17.8 78.0 21.7 116.3 20.5 60.6 9.4

HR heart rate (beats per minute), ABP arterial blood pressure (mm Hg), std standard deviation
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of patient data describing patients with a broad spectrum of

conditions. Individual recordings varied in length from 12

to 86 min, and in most cases, were about an hour long.

Evaluation of the data fusion framework began with

calculation of mean entropy values for each set of indi-

vidual SampEn values corresponding to records of the

MGH/MF Waveform Database. We performed data anal-

ysis by applying a sliding window of 200 PPIs (N = 200,

m = 2, r = 6) to interval sequences either manually veri-

fied or detected from one of the waveforms mentioned

above (ECG Leads I, II, V and ABP). Thus, we obtained

5 9 250 = 1,250 mean values, 250 values coming from

manually verified sequences in the database. Furthermore,

we calculated individual SampEn values across every

record using the fusion of ECG Leads I, II, V, and ABP and

then obtained mean entropy values. The gold standard for

validation was manual verification of R waves, which was

accomplished by manually picking times of R waves on

time points of the ECG. After hand-picking R waves of all

human records, times and RRIs were written to text files for

future reference.

2.4 Statistics

We used the parameters Se and ?P to compare the

detection performances of our data fusion framework

against individual waveforms and a combination of the

four available waveforms (see Table 3). Further compari-

sons were made using histogram plots (see Fig. 2). In

addition, mean HRC values were calculated for all records,

and paired t tests (in which the null hypothesis was that no

difference exists between groups) as well as equivalence

tests (two one-sided t tests) were then performed in order to

compare values derived from automatically detected peaks

Table 3 R-wave detection performance against MGH/MF waveform database

Waveform Verified TP FP FN Se (%) ?P (%) Avg(Se, ?P)

Fusion 1,526,672 1,382,804 47,236 143,868 90.6 96.7 93.7

Lead I 1,526,672 1,245,965 297,559 280,707 81.6 80.7 81.2

Lead II 1,526,672 1,433,281 122,752 93,391 93.9 92.1 93.0

Lead V 1,526,672 1,392,478 161,615 134,194 91.2 89.6 90.4

ABP 1,526,672 1,022,140 443,551 504,532 67.0 69.7 68.4

ABP arterial blood pressure, TP true positive, FP false positive, FN false negative, Se sensitivity, ?P positive predictive value, Avg(Se, ?P)

average of Se and ?P

Fig. 2 Histogram plots.

Histogram plots for manually

verified sequences and detected

interval sequences are shown.

Detected sequences come from

either a fusion of ECG Leads I,

II, V, and ABP (Fusion); ECG

Lead I; ECG Lead II; ECG Lead

V; or ABP
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(‘‘Fusion’’, Lead I, Lead II, Lead V, and ABP) with those

derived from manually verified sequences (see Tables 4, 5,

respectively). JMP version 9.0.0 (SAS Institute, Cary, NC,

USA) and the R Language (http://www.r-project.org/), a

well-known open-source statistical software package, were

used for statistical analysis.

For completeness, Bland–Altman plots were also

obtained by subtracting ‘‘detected’’ HRC values from the

criterion standard (see Bland–Altman plots in Fig. 3; NSR

data in green squares, AF data in blue circles, ST data in

magenta diamonds, ‘‘gold standard’’ is manually verified

peaks). Box plots of differences between mean HRC values

were also obtained, i.e., differences corresponding to

Bland–Altman plots (see Fig. 3). Finally, differences were

analyzed by paired t tests in order to determine whether

statistical significances existed between errors from the

‘‘fusion’’ of waveform sources and each of the single

waveform sources (see Table 6).

3 Results

We developed the Automated Electrocardiogram Selection

of Peaks (AESOP) algorithm to implement the fusion

functions for merging ECG peak results from individual

algorithms in real time. This fusion algorithm employs four

R-wave detectors as inputs and returns final detected peaks,

corresponding times, and beat signal quality indices as

outputs in approximate real time. Similar to a nearest-

neighbor selection scheme, the AESOP algorithm selects

the end time corresponding to a mode RRI or the RRI

closest to the previous averaged 12 RRIs. In other words, if

two or more component algorithms detect the same ECG

peak, the AESOP algorithm selects the end time and peak

value corresponding to the mode RRI’s end time. Other-

wise, the algorithm selects the end time and ECG peak

yielding an RRI closest to the previous averaged 12 RRIs;

this number (12) was chosen based upon heuristics in order

to ensure a reasonable average. The AESOP algorithm

required less than 6 s to analyze one record of the MIT–

BIH Arrhythmia Database on an Intel� CoreTM Duo central

processing unit at 2.93 GHz [29].

Similarly, we developed the Bypassing Electrocardio-

gram Beats or Peaks (BEBOP) algorithm for merging non-

ECG peak results. This algorithm differs from the AESOP

algorithm in two of its sub-implementations, namely, that

two tailored versions of the ATNL algorithm now replace

the ATNL and C algorithms in the AESOP algorithm, one

version for detecting only positive–negative slope deflec-

tions in order to focus on systole dynamics and the other

for detecting positive–negative slope deflections of a first-

order derivative of the original signal.

To avoid biasing this study, we used swine waveform

data to systematically tune the values of NTotal and n in the

bSQI. Starting with NTotal = 10 and incrementing by

multiples of 2, and then, by multiples of 5, we determined

that n = 2, 3 and NTotal = 30 yielded reasonable indices

between 0 and 100 % with 3 % resolution for sampling

frequency of 500 Hz. For swine with an average heart rate

of 120 beats per min, this corresponded to a time frame of

roughly 15 s.

For 250 ICU patient records in the MGH/MF Waveform

Database, the data fusion framework (AESOP, BEBOP)

achieved an averaged Se and ?P of 93.7 %, thereby out-

performing results for individual waveforms in terms of

mean Se/?P, i.e., tradeoff between Se and ?P (see Table 3).

In terms of operating points, out of 1,526,672 true beats, the

framework detected 1,382,804 TPs, 47,236 FPs, and

143,868 FNs (see Table 3). Histogram plots of PPI

sequences are shown in Fig. 2. Importantly, paired t tests (in

which the null hypothesis was that no difference exists

between mean HRC values derived from manually verified

Table 4 P values of paired t tests between complexity means (manual vs. detected)

(p value) Fusion Lead I Lead II Lead V ABP

Mean 0.83 ± 0.59 0.88 ± 0.58 0.90 ± 0.58 0.86 ± 0.59 1.43 ± 0.54

Manual 0.84 ± 0.59 p = 0.06 p \ 0.001 p \ 0.001 p = 0.02 p \ 0.0001

Table 5 P values of equivalence tests between complexity means (manual vs. detected)

Fusion Lead I Lead II Lead V ABP

Diff in means 0.010 -0.041 -0.055 -0.014 -0.583

Std err of diff 0.053 0.053 0.053 0.054 0.051

Max p value p = 0.045 p = 0.133 p = 0.201 p = 0.056 p = 1.000

1-a CI for diff 0.078, 0.097 -0.100, 0.018 -0.143, 0.031 -0.103, 0.074 -0.667, -0.498

Diff difference, Std err standard error, 1-a CI 1-alpha confidence interval, a test size = 0.05, specified difference threshold = 0.1, confidence

level = 0.9

128 J Clin Monit Comput (2014) 28:123–131

123



sequences and those derived from automatically detected

peaks) showed that the ‘‘Fusion’’ values were the least sta-

tistically different from the gold standard (see Table 4). Fur-

thermore, using 0.1 as the difference considered practically

zero, equivalence tests showed that only the ‘‘Fusion’’ values

were practically equivalent to the gold standard (see Table 5).

Lastly, the fusion of waveform sources produced better error

density distributions than those derived from individual

waveforms (see Fig. 3) as well as narrower confidence inter-

vals. Statistical significances were determined for all error

comparisons (p \ 0.05), except between ‘‘Fusion’’ and Lead

V (p = 0.35), with the most significance between the

‘‘fusion’’ of waveform sources and ABP (p \ 0.001).

4 Discussion

Although this study involved a fairly standard dataset [30]

based upon availability of three ECG lead as well as arterial

blood pressure waveforms, the dataset presented enough noisy

waveforms to challenge our data fusion framework. There-

fore, due to the quality of underlying data, the performance of

R-wave detection reported in Table 3 was quite low. Never-

theless, better R-wave detection performance results in better

signal-derived metrics (see Tables 3, 4, and 5). (It is important

to note here that many previously published results of beat

detection algorithms against different databases [e.g., MIT–

BIH Arrhythmia Database] involved the detection of beats or

Fig. 3 Bland–Altman and Box-and-whisker plots. a Bland–Altman

plots for mean entropy values derived from manually verified

sequences versus mean entropy values derived from detected interval

sequences are shown. Detected sequences come from either a fusion

of ECG Leads I, II, V, and ABP (Fusion); ECG Lead I; ECG Lead V;

or ABP. Error density distributions (histograms) superimposed on the

left-hand sides of each Bland–Altman plot. Green squares denote

patients with normal sinus rhythm, while magenta diamonds denote

patients with sinus tachycardia. Blue circles denote patients with other

underlying ECG rhythms. b Box-and-whisker plots. Box plots for the

differences between mean entropy values derived from manually

verified sequences and mean entropy values derived from detected

interval sequences are shown. Detected sequences come from either a

fusion of ECG Leads I, II, V, and ABP; ECG Lead I; ECG Lead II;

ECG Lead V; or ABP

Table 6 P values of t tests

between errors of complexity

means (manual vs. detected)

(p value) Lead I Lead II Lead V ABP

Error 0.04 ± 0.47 0.05 ± 0.33 0.2 ± 0.34 0.57 ± 0.68

Fusion -0.01 ± 0.35 p = 0.01 p = 0.02 p = 0.4 p \ 0.0001
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QRS complexes, rather than detection of R-waves. Hence,

their results may not reflect stringent requirements on per-

formance and may be better suited for beat applications, as

opposed to the real-time calculation of HRC.)

An initial analysis was conducted to observe whether a

fusion of three inferior waveforms produced results com-

mensurate with those obtained from one reliable waveform

(e.g., ECG Lead II); afterwards, data analysis involved all

four waveforms (Leads I, II, V, and ABP). Importantly, the

fusion of all available waveforms produced results better

than those obtained from one reliable waveform (e.g., ECG

Lead II). Visual comparisons of the error density distri-

butions (histograms) superimposed on the left-hand sides

of each Bland–Altman plot were made in order to deter-

mine whether the data fusion framework yielded the best

results. The fusion of waveform sources produced slightly

better error density distributions than those belonging to

individual waveform sources (see Fig. 3; Table 6). There-

fore, our method for calculating HRC has much potential

application in the clinical environment.

Statistical significances were found for all error com-

parisons (p \ 0.05), except between ‘‘Fusion’’ and Lead V

(p = 0.35), with the most significance between ABP and

manual verification (p \ 0.001), suggesting that the ECG

and ABP waveforms of patient records in the MGH/MF

Waveform Database are disparate in quality. The fact that

errors for Lead V were not significantly different from those

for the fusion of waveform channels also demonstrated that

the dominant lead (in this case, Lead II) may not always be

reliable for signal-derived metrics. As expected, because of

the ABP waveform’s poor quality, our data fusion frame-

work rejected use of this signal during fusion; this proved

valuable for testing the framework. Had all waveforms been

degraded in quality, a data fusion framework could prove

optimal for calculating HRC in the ICU environment.

The Bland–Altman plots also show different patient

groups through respective symbols and colors. Green

squares denote patients with NSR, while magenta diamonds

denote patients with ST. Blue circles denote patients with

AF. From these plots, patients with NSR have varying

complexity values and an overall mean entropy greater than

that for patients with ST, implying that the latter group often

involves patients with concomitant illnesses or pathologies.

These observations agree with findings in [19–22]. Equiva-

lence tests demonstrated the data fusion framework’s overall

reliability. While errors for Lead V were not significantly

different from those for the fusion of waveform channels,

this was not as apparent when considering equivalence

between mean values. Because mean HRC values varied by

rhythm, i.e., AF (1.0 ± 0.9); NSR (0.9 ± 0.5); and ST

(0.7 ± 0.5), from Tables 4 and 5, this study showed that

overall improved HRC calculations can better discriminate

patient groups.

From our experiments involving standard test data as

well as laboratory data at the Institute of Surgical Research,

we observed that the four individual PD algorithms that

compose the AESOP and BEBOP algorithms each dem-

onstrated particular strengths and weaknesses, thus reaf-

firming the use of a fusion algorithm for detecting peaks

within an ECG or non-ECG signal, respectively, especially

in a real-time, ambulatory environment. For specific

records, each component algorithm functioned better than

the other algorithms according to our implementations.

In light of recent work by Moorman et al. [31, 32] and

Seely et al. [33, 34] investigating the clinical use of HRC

and heart-related metrics for detecting sepsis and multior-

gan failure, improvement of HRC calculations may help

detect significant changes from baseline values earlier and

more accurately. Moreover, improved HRC calculations

could help improve trends over seconds, minutes, or even

days and identify crossed thresholds that would have

otherwise been missed due to poor RWD performance.

Consequently, improved HRC accuracy could enhance

clinical decision making as well as decision support sys-

tems in the areas mentioned above. Other applications

which require monitoring over time, such as mentioned in

[35], could likewise benefit from improvements in HRC

values.

Our work may also be extended to include waveforms

derived from pulse oximetry, a more common and non-

invasive method of measuring the pulsatile flow in the

cardiovascular system, Furthermore, the data fusion

framework described above may provide a general and

practical solution for extracting any heart-related charac-

teristics in the critical care environment.

Two limitations of this study were that (1) the MGH/MF

Waveform Database involved a dominant ECG lead for

many records and (2) annotated files containing manually

verified R waves depended on one reference signal. A

future study may be for us to run analyses on waveforms

with known amounts of degraded data, thereby demon-

strating not only reliability of HRC calculations but also

improved robustness. We also hope that future work using

a different dataset may better address the issue of clinical

outcomes, as related to improved R-wave detection per-

formance and heart-rate complexity calculations.

5 Conclusion

Two fusion algorithms (AESOP and BEBOP) were

developed for detecting the peaks of ECG and non-ECG

waveforms, respectively. They were then incorporated into

a framework and real-time system for calculating HRC

using multiple waveforms and signal quality indices. The

data fusion framework was shown to provide in real-time a
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reliable continuously streamed HRC value, derived from

multiple waveforms in the presence of noise and artifacts.

This approach will be validated and tested for assessment

of HRC in trauma patients.
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